Heraeus Fused Silica Opaque Optical Diffuser Material: HOD500

Robert Sawyer | NASA Mirror Tech Days

1Heraeus Tenevo, LLC, Buford, GA; 2Heraeus Quarzglas GmbH & Co. KG, Hanau, Germany
Content

- Heraeus Quarzglas
- Definition: Diffuser
- Challenges on Diffuser
- Heraeus Optical Diffuser: HOD-500
 - Process
 - Requirements / Specifications
 - Characterization
- Applications
- Summary
Heraeus Quarzglas - What sets us apart?

- More than 100 years of experience in quartz glass
- All 4 production processes in house
- Only material supplier with 3-D homogenisation process
- Precision molding
- R&D team for support and providing technical data
Custom Tailored Products

- Optics for Fusion lasers:
 - NIF, CEA, LLE Omega

- Quartz glass for Space Applications
 - Laser Ranging, Einstein Gravity Probe B, Vista

- Optics for Science
 - VIRGO & LIGO & GEO600

- Defense
 - Air Borne Laser
 - UAV / Directed Energy
Definition: Diffuser

- Optical diffusers are used for uniform dispersion of light in a variety of industrial applications.

- In optics, a diffuser is any device that diffuses, spreads out or scatters light in some manner, to give soft light.
 - Light reflects and diffused from a white surface
 - translucent materials as compact optical diffusers

- Perfect diffuser:
 - Lambertian reflectance (its brightness appears the same from any angle of view)

Juds, Scott M.: Photoelectric sensors and controls: selection and application.*
Current Products

- Ground or Chemically treated Glass
- Flashed Opal glass surfaces
- PTFE plastic (Polytetrafluoroethylene)
- OM-100 from Heraeus, designed for Semi-Conductor applications
Disadvantages

Ground, Chemically or Flash Glass
- Almost Lambertian diffuser
- Depending on base material different working wavelength ranges

PTFE plastic (Polytetrafluoroethylene)
- for >400 °C loss of stability
- Change of reflection behavior over time → recalibration
 - Reflectivity loss below 250nm
 - Potential UV degradation
 - Low density of 1.25 – 1.5 g/cm³ leads to bad mechanical stability

Opaque natural quartz, e.g. OM-100 from Heraeus
- Improvement for a lot of parameters, but still:
 - Marbel effect → no homogeneous density
 - Transmission and reflection loss in UV due to metallic impurities

Porous properties
HOD Motivation

- Product improvement over OM-100
- Maximum reflectivity/transmission from UV, VIS to NIR
- Longterm stable behavior
- Machineable
- Homogenous density distribution
- Low level of metallic impurities
- Low fluorescence
- Lambertian behavior
About HOD

- Heraeus Optical Diffusers are uniform opaque (white) sintered fused silica and fused quartz materials molded into shape.

- The material is produced by molding & high-temperature sintering of high purity fused silica or fused quartz powder into a bulk material with uniform micro-bubbles. The starting powders and controlled bubble content produce the desired optical characteristics.

- This results in bulk material & components that produce the optimized performance.

- Currently Heraeus Optical Diffuser materials & components are available in two grades:
 - HOD-300: fused quartz
 - HOD-500: fused silica (enhanced UV, purity)
Heraeus Optical Diffuser – HOD-500

- Base material: fused silica
- Scattering centers: bubbles Ø<25µm
 - Keyence light microscopy, 100x and 1000x magnification

Can be used in **reflective** and **transmissive** mode
→ performance depends on thickness
Heraeus Optical Diffuser – HOD-500

- Density: 2.155 g/cm3 ± 0.25%
- Typical metallic impurities: < 0.36 ppm
- OH content: ~455 ppm ± 5%
- Typical transmission / reflection for a 5mm thick fire polished diffuser*:

*depends on thickness, surface finish and measurement setup

<table>
<thead>
<tr>
<th>Element</th>
<th>Typical metallic impurities in ppb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li</td>
<td><10</td>
</tr>
<tr>
<td>Na</td>
<td>34</td>
</tr>
<tr>
<td>K</td>
<td>24</td>
</tr>
<tr>
<td>Mg</td>
<td>15</td>
</tr>
<tr>
<td>Ca</td>
<td>120</td>
</tr>
<tr>
<td>Fe</td>
<td>29</td>
</tr>
<tr>
<td>Cu</td>
<td><8</td>
</tr>
<tr>
<td>Cr</td>
<td><8</td>
</tr>
<tr>
<td>Mn</td>
<td><8</td>
</tr>
<tr>
<td>Ti</td>
<td><10</td>
</tr>
<tr>
<td>Al</td>
<td>50</td>
</tr>
<tr>
<td>Zr</td>
<td><10</td>
</tr>
<tr>
<td>Ni</td>
<td><8</td>
</tr>
<tr>
<td>Mo</td>
<td><10</td>
</tr>
<tr>
<td>W</td>
<td><10</td>
</tr>
<tr>
<td>C</td>
<td><10</td>
</tr>
</tbody>
</table>
Applications

- Radiation hard regime
 - Diffuser in space bound spectroscopy, e.g. satellites for solar or atmospheric measurement/analysis

- Diffuser application in IR and UV
 - Spectroscopy

- Laser Calibration standards
 - Spectroscopy

- Uniform radiation cavity
 - Laser cavities
 - Integrating sphere

- Attenuator / filter
 - Beam dump
Summary

- Heraeus Optical Diffuser HOD-500
- Customer tailored diffuser product initially developed for space applications
- Opaque fused silica
 - Small enclosed air bubbles
 - Maximum reflectivity/transmissivity from UV to NIR
 - Closed porous
 - Strong and machinable
 - Long term stability
 - Homogeneous density
 - Low metallic impurities and low fluorescence
 - Lambertian behaviour

- A product for more than just space !!!!