Advanced UVOIR Mirror Technology Development for Very Large Space Telescopes

H. Philip Stahl
Objective

Define and initiate a long-term program to mature six inter-linked critical technologies for future UVOIR space telescope mirrors to TRL6 by 2018 so that a viable flight mission can be proposed to the 2020 Decadal Review.

- **Large-Aperture, Low Areal Density, High Stiffness Mirrors**: 4 to 8 m monolithic & 8 to 16 m segmented primary mirrors require larger, thicker, stiffer substrates.

- **Support System**: Large-aperture mirrors require large support systems to ensure that they survive launch and deploy on orbit in a stress-free and undistorted shape.

- **Mid/High Spatial Frequency Figure Error**: A very smooth mirror is critical for producing a high-quality point spread function (PSF) for high-contrast imaging.

- **Segment Edges**: Edges impact PSF for high-contrast imaging applications, contributes to stray light noise, and affects the total collecting aperture.

- **Segment-to-Segment Gap Phasing**: Segment phasing is critical for producing a high-quality temporally stable PSF.

- **Integrated Model Validation**: On-orbit performance is determined by mechanical and thermal stability. Future systems require validated performance models.

We are pursuing multiple design paths give the science community the option to enable either a future monolithic or segmented space telescope.
Approach

Technology must enable mission capable of doing both general astrophysics and ultra-high contrast observations of exoplanets.

Outstanding team of academic, industry & government with expertise:
• UVOIR astrophysics and exoplanet characterization,
• monolithic and segmented space telescopes, and
• optical manufacturing and testing.

Integrate science & systems engineering to:
• derive engineering specifications from science measurement needs and implementation constraints;
• identify technical challenges in meeting these specifications;
• iterate between science and systems engineering to mitigate challenges; and
• prioritize the challenges.

Systematically mature TRL of prioritized challenges using
• design tools to construct analytical models and
• prototypes/test beds to validate models in relevant environments.
Goals

Defined quantifiable goals for each of the six key technologies:

Large-Aperture, Low Areal Density, High Stiffness Mirror Substrates:
 • make a sub-scale mirror via a process traceable to 500 mm deep mirrors

Support System:
 • produce pre-Phase-A point designs for candidate primary mirror architectures; and
 • demonstrate specific actuation and vibration isolation mechanisms

Mid/High Spatial Frequency Figure Error:
 • ‘null’ polish a 1.5-m AMSD mirror & subscale deep core mirror to a < 6 nm rms zero-g figure at the 2 C operational temperature.

Segment Edges:
 • derive edge specifications traceable to science requirements; and
 • demonstrate an achromatic edge apodization mask.

Segment to Segment Gap Phasing:
 • develop models for segmented primary mirror performance; and
 • test prototype passive and active mechanisms to control unconstrained, damped and constrained gaps to ~ 1 nm rms.

Integrated Model Validation:
 • validate thermal model by testing the AMSD and deep core mirrors at 2 C; and
 • validate mechanical models by static load test.
Work Breakdown Structure

Project is managed according to WBS. Each quantitative Milestone is scheduled.

Advanced Normal Incidence Mirror Technology Development
for Large UVOIR Telescope

<table>
<thead>
<tr>
<th>WBS</th>
<th>Name</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
<td>1 2 3</td>
</tr>
<tr>
<td>1.0</td>
<td>Management</td>
<td>K/O Mtg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>Science Advisory Team</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>Systems Engineering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>Technology Development</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Monolithic Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.1</td>
<td>Deep Core</td>
<td>Design Trades, MOR Tests</td>
<td>Fab of Test Mirrors</td>
<td>8m Monolithic</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Support Structure</td>
<td></td>
<td></td>
<td>4m Monolithic</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Mid/High Spatial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.3.1</td>
<td>AMSD</td>
<td></td>
<td>Ambient Polishing Charac</td>
<td>Null Polish</td>
</tr>
<tr>
<td>4.1.3.2</td>
<td>Deep Test Mirrors</td>
<td></td>
<td>Null Polish</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Segmented Technologies</td>
<td></td>
<td>Mitigation via Apodization Mask Coating (STScI)</td>
<td>Fabrication Process Improvements (ITT)</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Edges</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.2</td>
<td>Phasing</td>
<td>Mitigation via Apodization Mask Coating (STScI)</td>
<td>Fabrication Process Improvements (ITT)</td>
<td></td>
</tr>
<tr>
<td>4.2.2.1</td>
<td>Design Trades</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.2.2</td>
<td>Correlated Magnetic</td>
<td>Define & Build Constrained I/F</td>
<td>Define & Build Damped Interface</td>
<td>Define & Build Adjustable Interface</td>
</tr>
<tr>
<td>4.2.2.3</td>
<td>I/F Mechanisms Characterization</td>
<td>Design & Build Test Setup</td>
<td>Unconstrained Perf</td>
<td>Constrained Perf</td>
</tr>
<tr>
<td>4.2.2.4</td>
<td>Design AOSD Interface Devices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Model Verification & Validation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3.1</td>
<td>Thermal</td>
<td>AMSD 2C Test</td>
<td></td>
<td>2C Test</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Mechanical</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Milestone Project

Project was rephased from 2 years to 3 years.

<table>
<thead>
<tr>
<th>TASK</th>
<th>FY 2012</th>
<th>FY 2013</th>
<th>FY 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>JUL Y</td>
<td>AUG</td>
<td>SEP</td>
</tr>
<tr>
<td>Major Milestones</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large-Aperture, Low Areal Density, High Stiffness Mirror Substrates</td>
<td>Mirror Fabrication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support System</td>
<td></td>
<td>4m Point Design</td>
<td></td>
</tr>
<tr>
<td>Mid/High Spatial Frequency Figure Error</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Segment Edges</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrated Model Validation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Project Organization

Principle Investigator
- Dr. H. Philip Stahl | MSFC

Systems Engineering
- SE Lead | Dr. W. Scott Smith | MSFC
- Integrated Modeling | Gary Mosier | GSFC

Science Advisory

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Marc Postman</td>
<td>STScI</td>
<td>ITT Project Manager</td>
</tr>
<tr>
<td>Dr. Remi Soummer</td>
<td>STScI</td>
<td>Systems Engineer/Sys. Lead</td>
</tr>
<tr>
<td>Dr. Anand Sivaramakrishnan</td>
<td>STScI</td>
<td>Process Development Lead</td>
</tr>
<tr>
<td>Dr. Bruce A. Macintosh</td>
<td>LLNL</td>
<td>Thermal Analyst</td>
</tr>
<tr>
<td>Dr. Olivier Guyon</td>
<td>UoA</td>
<td>Mechanical Analyst</td>
</tr>
<tr>
<td>Dr. John E. Krist</td>
<td>JPL</td>
<td>Mirror System Design Lead</td>
</tr>
</tbody>
</table>

Engineering

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical Testing</td>
<td>Ron Eng</td>
<td>MSFC</td>
</tr>
<tr>
<td>Structure Mechanical</td>
<td>William Arnold</td>
<td>Jacobs</td>
</tr>
<tr>
<td>Institutional Co-I</td>
<td>Larry Fullerton</td>
<td>CMR</td>
</tr>
</tbody>
</table>

Chart Key
- NASA MSFC Lead
- STScI Lead
- ITT Lead
- GSFC Lead
WBS Task Discussion
Science team works with Engineering to:

- derive (and/or confirm) engineering specifications for advanced normal incidence mirrors which flow down from the astrophysical measurement needs and flow up from implementation constraints;
- collaborate with systems engineering to mitigate these challenges via architectural implementation trades; and
- prioritize which challenges should be solved first.

The Science Team has meet 4X by telecon and once face-to-face in FY12.
WBS 3.0 Systems Engineering

Systems Engineering working with Science:

• derives engineering mirror specifications to achieve on-orbit performance requirements;

• identifies technical challenges in meeting these specifications;

• prioritize technology development using a systems perspective to determine which technologies will yield the greatest on-orbit performance improvement; and

• define metrics, evaluate their TRL, and assess their advance.
Systems Engineering will

• develop thermal & mechanical models of candidate mirror systems including substrates, structures, and mechanisms;
• validate models by test of full- and subscale components in relevant thermo-vacuum environments.

Specific analyses include:

• maximum mirror substrate size, first fundamental mode frequency (i.e., stiffness) and mass required to fabricate without quilting, survive launch, achieve stable pointing and maximum thermal time constant;
• segment edge dimensions and roll; and
• segment-to-segment gap dimensions, phasing and stability.
WBS 4.0 Technology Development

WBS 4.0 develops technology

4.1 Monolithic Mirror Technology
4.2 Segmented Mirror Technology
4.3 Model Verification and Validation

Enables our 4 baseline options:

- 4-m monolithic mirror launched by an EELV;
- 8-m monolithic mirror launched by a HLLV;
- 8-m segmented mirror launched by an EELV; and
- 16-m segmented mirror launched by a HLLV.

Same technology can also enable 8-m on HLLV.
WBS 4.1 Monolithic Technologies

Monolithic mirror technology is required to manufacture, test, launch, and operate a 4 or 8-m monolithic mirror also 2-m class mirror segments.

WBS 4.1 matures the 3 key monolithic mirror challenges:

4.1.1 Deep Core Mirror Substrate
4.1.2 Mirror Support Structure
4.1.3 Mid/High Spatial Frequency Surface Errors
WBS 4.2 Segmented Technologies

Segmented mirror technology is required to assemble, align, phase, and operate a segmented mirror as an integrated unit to UVOIR tolerances.

WBS 4.2 matures the 2 key segmented mirror challenges:

4.2.1 Edge Control
4.2.2 Gap Phasing Control
WBS 4.3 Model Verification & Validation

Models are required to predict on-orbit performance for pointing stability, jitter, and thermal-elastic stability, as well as vibro-acoustics and launch loads. Performance data is required to verify and validate models.

WBS 4.3 matures the 2 key modeling challenges:

- 4.3.1 Thermal Model Verification
- 4.3.2 Mechanical Model Verification
WBS 4.1.1 Deep Core Substrate

Need: 500 mm thick mirror substrate.

4 m PM requires substrate with areal density of <60 kg/m² & ~200 Hz first mode. Analysis indicates this can be achieved with a 500 mm thick mirror. For 8-m, this is an upper thickness limit.

SOA: 300 mm deep substrates

Starting: TRL3/4

2.4 m is TRL9 (HST), Kepler is 1.4m – both are sub-scale.
WBS 4.1.1 Deep Core Substrate

Milestone: demonstrate innovative process to make glass cores with required areal density that can be scaled to 500 mm deep.

Approach: manufacture 40 cm dia x 400 deep subscale (‘cut-out’ of a 4 m dia x 400 mm deep mirror) using 3 ‘stacked’ cores with full size cells and ribs and pocket milled face and back sheets with full sized pockets, ribs and thickness.
WBS 4.1.2 Support Structure

Need: System to support mirror during launch and deploy it into an on-orbit strain free state; maintain operational wavefront and pointing stability.

SOA: Kepler 1.4 m support system

Starting: TRL3/4

 Kepler support system is TRL9, but it is sub-scale.

Milestone: Pre-Phase-A point designs for potential 4-m and 8-m monolithic primary mirrors and an 8-m segmented mirror.

Approach:
 Design structure based on substrate designs, launch vehicle constraints and performance requirements.
 Design, build & demonstrate a two-stage active strut/actuator.
WBS 4.1.3 Mid/High Spatial Frequency

Need: < 10 nm rms surface mirror at 2C

SOA:
- AMSD at <10 nm rms and ATT at <20 nm rms at 20C
- Hubble, 7.8 nm rms at 20C
- 4m & 8m ground telescope mirrors at ~ 10 nm rms at 20C

Starting: TRL4 for 1.5 m; TRL 3 for 4 m or larger.

 AMSD, ATT & HST are sub-scale & not at operational temperature.
 Ground 4m & 8m mirrors are full size, but not flight areal density.

Milestone: polish traceable substrates to UVOIR tolerances at their anticipated operating temperature of 2 C.

Approach:
- Create mechanical and thermal models
- Test AMSD mirror at 2C and cryo-null polish via traceable process
- Demonstrate on 4.1.1 sub-scale mirrors process (traceable to 2m, 4m or 8m mirrors) to polish without introducing quilting
WBS 4.2.1 Edge Control

Need: TBD by Science and Systems Engineering

SOA: Keck is 2 mm (but substrates are 400 Hz); JWST is close to 5 mm; AMSD was 10 mm; QED & Zeeko SBIRs did 2 mm

Starting: TRL3 to 6 depending on Requirement

Milestone:
 Define Requirement
 Demonstrate apodization concept via a test article.

Approach:
 Write an amplitude apodization mask on the edge of a mirror and test its impact on edge diffraction.
WBS 4.2.2 Gap Phase Control

Need: < 5 nm rms segment to segment stability

SOA: JWST, passive, 20 nm 50 Hz rocking mode; Keck, active, < 20 nm rms 50 Hz; ITT AOSD, active, < 10 nm rms 30 Hz; LAMP, active, classified in Vacuum.

Starting: TRL3/4

UVOIR Requirement not achieved.

Milestone:

Demonstrate Active Strut (WBS 4.1.2)

Quantify utility of Correlated Magnetic Interfaces

Approach: design, build and test dynamic dampening devices on sub-scale test-bed and on ITT AOSD test-bed.
Correlated Magnetic (CM) Interface

CMs are useful for vibration isolation & motion constraint. CM can be designed to constrain interface to a single symmetry point; rotate about a symmetry point; or move linearly in one direction but not the orthogonal direction – similar to a mechanical flexure.
WBS 4.3 Integrated Modeling

Need: Predict on-orbit performance

SOA:
 JWST (AMSD, Flight PMSAs, BSTA 4% match);
 Air Force Structural Vibration Modeling and Verification (SVMV)

Starting: TRL4/5

 UVOIR Requirement not achieved.

Milestone:
 Validate Thermal Model
 Validate Mechanical Model

Approach:
 Thermal model predicts AMSD figure sensitivity of 5 nm rms/K.
 Prediction will be validated at the MSFC XRCF. Additionally, thermal figure stability will be quantified.
 Mechanical model will be validated via static load test.