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Optical Coatings currently limit 
achievable performance of critical optical 

instruments and applications

• Optical atomic clocks (spectroscopy)
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• Gravity wave detection.

• Laser Cooling



‐Mirror technology: 

‐ 40 layers of Ta2O5 and SiO2  ¼ wave 

dielectric stacks                         *.         

‐Deposited via ion beam sputtering.

‐Surface flatness and reflectivity support    
finesse of 250,000.

The JILA Sr clock laser

*Numata et. al. PRL 93, 2004.

‐Substrate and coating 
thermal noise limited.



Gravity Wave Observatories (GWO) are online

Two North American LIGO Observatories



Laser Interferometric Gravity Observatory 
(LIGO)

• Einstein predicted Gravity Waves in 1918.
• 1980’s Taylor and Hulse win Nobel Prize for observing 

binary pulsars - providing strong evidence for gravity 
waves

• Gravity Waves are extremely weakly coupled 
• Gravity Wave Observatories (GWO) are not based on 

Electro-Magnetic (EM) Observation per se - but based 
use of an extremely sensitive interferometers with long 
arms (i.e are being detected using EM) to sense motion

• GWO have been in operation for nearly 40 years
• GWO must operate in extreme seismic isolation 
• GWO search for four types of signals (bursts –

quasiperiodic)
• “Noise Floor” limits GW detection
• LISA is a future GWO planned for Space Deployment 



Current LIGO Sensitivities 
(published Spring 2007)



LIGO Noise Issues in Mid-Frequency Range
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Mirror thermal noise limit : 
- Q of test-mass (substrate, coatings)
- T of test-mass, M of test-mass

Shot noise limit :
- directly by laser power 
- indirectly by optical imperfections
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Increase laser power but increase also thermal effects 

(radiation pressure problem : larger masses )

New materials for mirrors, high Q even at low T, large size, optical quality
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GWO Mirror components

• Substrates 
– Super polished low absorbing Fused Silica

• Coatings
– low absorption, low loss 1064 nm High 

Reflectance Mirror Coatings 
– Metal oxide coating materials (Ta2O5/SiO2)
– Doped High Index Materials being studied





Coatings: optical performances 
Optical performances achieved in Virgo-SMA (LMA):

1992 1994 2000 to Virgo

Absorption at 633 nm
20 

ppm 10 ppm < 5 
ppm 4 ppm

Absorption at 1064 nm - 2 - 3 
ppm

0,5 
ppm 0.6  ppm

Scattering at 633 nm
50 

ppm 5 ppm 1,2 
ppm

Scattering at 1064 
nm - 2 ppm 0,6 

ppm

4 ppm 
over

Φ 150 mm

Wavefront - - -
3.8 nm 

rms over 
Φ 150 mm

Components 
diameter

25 
mm 50 mm 25 mm 350 mm

4 ppm



Advanced LIGO Test Mass 
Coatings: Requirements 

G. Harry, et al., 
LIGO-C030187-00-R
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Schematic Diagram of E-Beam 
Deposition System
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Schematic of Ion Assisted 
E-Beam Deposition System



low process temperature 
critical 
e-beam evaporation
boat- evaporation 
ion source APS
Ar- ion assistance :
60eV – 160eV

APS 904 (Leybold- Optics)

Plasma/Ion Assist Coating Technology

Plasma - Ion Assisted Deposition



Microstructure of IBS Films 



Advantages of IBS Process



Critical Laser Application (Laser Gyro) Initially 
Limited by Performance of the Optical Coatings



Herman Oberth and the ABMA rocket 
team (Early 1950s)

http://upload.wikimedia.org/wikipedia/commons/b/b6/AMBA_Pioneers.jpg
http://upload.wikimedia.org/wikipedia/commons/2/2a/Deep_Space_1_lifted.jpg
http://upload.wikimedia.org/wikipedia/commons/3/38/Deep_Space_1_using_its_ion_engine.jpg


Schematic of Ion Beam Sputtering (IBS) Process
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Low Loss IBS Process has been scaled 
to a 1.5 Meter Class IBS Chamber



Key mechanical properties of metal oxide 
films deposited by IBS

IBS films are typically:
• very low scatter, exhibiting few voids and defects from 

the deposition process (one or two orders of magnitude 
less than e-beam films)

• amorphous or quasi amorphous (very small crystalline 
domains) microstructure – low bulk scatter

• have high compressive stress, in the range of 300 MPa
• exhibit high packing density and do not absorb water, do 

not exhibit spectral shift or surface figure changes with 
changes in humidity, temperature or vacuum to air 
transitions

• have better thermal conductivity than films deposited by 
thermal, e-beam or IAD techniques



TEM studies of coating structure

• Convergent beam electron diffraction measurements (a) of a doped 
ion-beam sputtered Ta2O5 layer (see TEM image, (b)) showing only 
diffuse rings of intensity, confirming that the layer is amorphous.

Ta2O5 layer

SiO2 layer

(a) (b)
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LANL Measured External Heating 
in Dielectric Mirrors (after Greenfield)
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Calculated 1030 nm Reflectance 
on ZBLAN (expanded scale)
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Calculated Transmission of 1030 
nm HR coating (expanded scale)



Measured % T of 1030 nm HR
on commercial spectrophotometer

Measured %T of 1030 nm HR on polished fused silica witness at normal incidence
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Measured IBS deposited 1030 nm HR film absorption on 
fused silica witness @ 1064 nm using Photothermal 

Technique (PCI-03)
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Ultra low loss1030 nm HR has been 
successfully applied to polished ZBLAN 

samples
• Non-optimized ZBLAN 

glass material supplied by 
LANL

• “Laser Polish” applied by 
fabrication vendor to 
ZBLAN surfaces

• Coating Process 
variations investigated to 
establish performance 
and adhesion of HR 
coating stack to ZBLAN

• 20 ppm Total Loss – 7 ppm
Absorption- 9 ppm Transmission – 4 
ppm scatter



Characterization of thin film polarizer coating using a 
commercial spectrophotometer  compared to tunable Laser 

Spectrophotometer



Optical Metrology of low loss films  
based on Energy Balance {1=T+R+A+S}

• Cavity Ringdown Lossmeter (CRD) – measures total loss 
[Absorption (A)+Scatter (S)+Transmission (T)]
• Measures decay of a light pulse in a resonant cavity as a function 

of time.  Knowing cavity length and speed of light determine cavity 
loss per round trip from decay curve. Compare loss in 2 & 3 mirror 
cavity.

• Photothermal Common-path Interferometer (PCI) – measures (A)  
@ laser wavelength
• Detects the weak phase distortion of a probe beam (633nm) 

caused by the absorption of a focused “pump” beam (at the 
wavelength of interest - .e. 1064 nm). Detection occurs in the 
volume defined by the intersection of the two beams. Calibrated 
against a “known” reference.

– Thermal Camera (A) – Measure temperature rise of absorbing region. 
Calibration of standard and understanding of system characteristics.

• Calorimeter – measures (A) (ISO 11551)
• Measures the temperature rise for a known mass when illuminated 

by a light beam of known intensity.
• Scatterometer – ARS, OHP, BRDF and TIS to measure (S) 
• Photometer – measures (T) & (R) using a Laser based approach or 

commercial spectrophotmeter



Cavity Ringdown Lossmeter
• Example cavity-

transmission traces 
illustrate the variation 
with cavity loss after 
the laser is turned off. 

• Measured time values 
determine total loss

• Optimized performance 
for low loss (1-10 ppm) 
operation with custom 
mirrors

• Measurements can be 
performed at angle and 
for a given polarization



Reference-Cavity Measurements

• In this setup for 
reference-cavity 
measurements (without 
test optic), transmitted 
light through Cavity 
Mirror 2 is collected by 
a photodetector. 

• The voltages are 
digitized and analyzed 
by an on-board 
computer.

• This data is stored as 
the reference.



Reflectivity Measurements
• For characterizing 

losses in HR’s – the 
sample under test is 
introduced into the 
cavity.

• A second 
measurement is 
made and compared 
to the cavity



Characterization of intracavity 
losses can also be made

• For characterizing 
losses in bulk materials 
and absorptance – the 
sample under test is 
introduced into the 
cavity.

• A second measurement 
is made and compared 
to the reference cavity 
results



Photothermal characterizations are 
also made

• Rapid characterization of sample 
performance

• X,Y and Z Scans of uncoated and coated 
sample can be made 

• Measurements made under relatively high 
power levels

• Surface and bulk evaluations can be made
• Cleaning, bulk materials and process 

evaluations can be made



Schematic of Optical Layout



Weakly absorbing films are 
characterized



Measurement Approach



Samples are translated and 
Surfaces and bulk characterized



PCI -03 Installation



Measured Response of beam translating 
into sample has been modeled



Measured Performance of Polished 
Suprasil 3001



1064 nm Characterization Scan of 
HR  coating on fused silica



PCI Transverse Scan across 1064 
nm HR

Transverse scan #1 of HR
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2D scan of 1064 nm Absorption of 
Overcoated Opaque Gold on Polished 

Silicon Substrate



Test mass coatings: Optical properties

• Require low average absorption 
(0.5 ppm) to limit gaussian-shaped
thermal distortion

• Also require freedom from point
absorbers to limit inhomogeneous
distortion

• 2004: Maps of low-absorption 
coatings
measured in same class-10 room
as coating machine (LMA)

• Best results: Average absorption 
0.32 ppm

• Only 10 points greater than 0.5 
ppm



Photothermal microscopy is a 
powerful tool for examining fluence 

limiting defects

Sample

Probe beam
Single-point detector 

& lock-in amp

Filter

Pump beam

Chopper

2-axis stage

Reichling  et. al  “Defect-induced laser damage in oxide multi-layer coatings for 248 nm”, Thin Solid Films 
320, 264-279 (1998). 



LLNL Photothermal images indicate that not all 
highly absorbing defects are nodules

SEM image after 
photothermal 
microscope 

induced damage

Photothermal
image



Photothermal microscopy non-destructively identifies 
defects to enable further defect characterization

Defect 3a

20 µm

Photothermal scan

SEM image of a
FIB cross section

1 µm
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Photothermal signal for site 3 defects



G080162-00-D Workshop on Optical Coating , 
March 20-21, 2008
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Absorption measurement

• Thanks to a visit to Ginzton Laboratory, Stanford 
University, we implemented the photothermal common-
path interferometer (PCI, see A. Marksoyan’s talk) in our 
RTS bench, using a 30W cw Nd:YAG and 5mW He-Ne.

• The calibration is based on the 1” (dia.) reference mirror 
which is measured in the contamination cavity, and cross 
checked with the mirror measured at Ginzton Laboratory.



G080162-00-D Workshop on Optical Coating , 
March 20-21, 2008
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HR absorption 
measurement 

in the contamination cavity
Network

Analyzer

Daqun Li, Dennis Coyne, and Jordan Camp,  Applied Optics, Vol.38, p5378, 1999



G080162-00-D Workshop on Optical Coating , 
March 20-21, 2008
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Schematic of the ‘TIS’ 
measurement

NPRO X-Y stage

LIGO-I mirror

HEPA filter unit

Z

y
X

Faraday

Chopper
driver

Power
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G080162-00-D Workshop on Optical Coating , 
March 20-21, 2008
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RTS system,   an optical characterization bench 

It was established at Caltech OTF 
lab in 1997 :
(Jordan Camp, Bill Kells et. al.)

AR Reflection,
HR Transmission,
HR Scattering at 45º.

Since 2001 :
Substrate birefringence 
homogeneity,
HR ‘Total Integrated Scattering’ 
(1.5º < θ < 78º),
Substrate bulk absorption,
HR Coating absorption.



G080162-00-D Workshop on Optical Coating , 
March 20-21, 2008
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TIS results of the LIGO I 
mirrors



G080162-00-D Workshop on Optical Coating , 
March 20-21, 2008
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HR absorption of 4ITM07, 
which  was swapped out from LHO in 2005

No uniform contamination 
layer is observed.

Contamination are some 
high absorption points.

The point contamination can 
easily be cleaned by drag 
wiping.



Zygo OHP Instrumentation 
supports optical surface evaluation 
of superpolished optical surfaces

MLD Technologies, LLC 56



12” diameter Phase Measuring Interferometer 
supports measurement of coated optics at the 

wavelength of operation

MLD Technologies, LLC 57



Large Coated Optics can be inspected per 
Mil-Spec Conditions- but this is not sufficient 

for critical applications



Large Area Atomic Layer Deposition 
(ALD) Process provides Loss Low 

Optical Coatings that are conformal 
and pinhole free

MLD Technologies, LLC 59



Conclusions

• Optical Coatings currently limit the performance 
of some critical laser based optical systems

• Identification of source of point defects such as 
nano-precursors and specific defect 
mechanisms in high performance vapor 
deposited mirror coatings is a challenge

• Large Mechanical Losses due to Thermal Noise 
– i.e. Internal Friction of high index optical 
coating materials remains a challenge for GWO

• Cleaning is critical to achieving and maintaining 
low loss optical performance 
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