High-resolution detector for at-wavelength metrology of X-ray optics

Bipin Singh¹, Harish B. Bhandari¹, Julia K. Vogel², Michael J. Pivovaroff², Brian D. Ramsey³, and Vivek V. Nagarkar¹

¹ Imaging Technologies and Applications Group, Radiation Monitoring Devices, Watertown, MA 02472
² Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550
³ Marshall Space Flight Center, NASA, VP62, Huntsville, Alabama 35812

NASA Tech Days, October 1, 2013
NASA SBIR Grant NNX12CA83C
RMD, Imaging, Speed – A historical perspective

Ca. 1908

Ca. 1948
RMD, Imaging, Speed – A historical perspective

1897 - 1902 - 1924

World automobile speed record, 1906-1911, 127.7 mph
Outline

• Program overview
• Structured scintillators
 – Advantages
 – Fabrication methods (vapor deposition, e-beam deposition, laser pixelation)
• Detector
 – Design
 – Specifications
 – Evaluations
• Software
 – Single photon detection algorithm
 – Simulation and analysis
• Conclusions
Program objectives

• Phase I Goal:
 – *Demonstrate the feasibility of developing a high resolution detector for at-wavelength metrology of X-ray optics.*

• Phase II Goal:
 – *Develop a prototype high-resolution detector for at-wavelength metrology of X-ray optics, fully characterize its performance, and deliver it to NASA.*
The Team

• RMD
 – Detector design and development
 • Scintillator fabrication
 • Detector design and fabrication
 • System integration
 • Evaluations and feasibility studies

• LLNL
 – NuSTAR X-ray optics calibration
 – Application-specific needs
 • Single-photon counting algorithms
 • Detector evaluation
Detector requirements for NuSTAR mission

• High spatial resolution (~25 μm)
• Operation over a large energy range (5 keV to 100 keV+)
• High sensitivity to X-rays (~100% to >70%)
• Large active area (~5×5 cm²)
• High count rate capability (10⁵ events/second)
• Flexible design / adaptable to various mission requirements
• Ease of operation
Our Solution

- Combine a low-noise EMCCD camera with a high performance structured scintillator
EMCCD advantages

- Commercially available
- Proven technology
- Low-light imaging
- No readout noise
- High spatial resolution
- High quantum efficiency
- Solid-state technology

RMD Customized EMCCD Camera

1:1 fiberoptic plug, bonded directly to EMCCD chip

Detachable 3:1 fiberoptic taper

EMCCD camera
Why structured scintillators?

- High absorption (mm/cm thick material).
- Poor spatial resolution (wide light spread).

- Poor absorption (μm thin material).
- High spatial resolution (limited light spread).

- High absorption (mm/cm thick material).
- High spatial resolution (channeling of the light).
Scintillator fabrication techniques

- Vapor deposition
 - Scintillators for X-ray imaging
 - Scintillators for neutron detection and imaging

- E-Beam deposition
 - Thin film scintillators for microtomography
 - High temperature materials that cannot be evaporated

- Hot wall evaporation
 - Scintillators for gamma ray detection and spectroscopy.
 - Scintillator fabrication with dopant gradient, novel formats and shapes

- Isostatic pressing and sintering
Structure control in films

- Zone 1 occurs at $T_s/T_m < 0.3$
 Amorphous Phase
- Zone 2 occurs at $0.3 < T_s/T_m < 0.5$
 Mixed Phase
- Zone 3 occurs at $T_s/T_m > 0.5$
 Crystalline Phase
RMD has pioneered development of microcolumnar CsI:Tl for digital radiography.
Versatility of vapor deposition

8” Vacuum Flanges

5x5 cm² Fiberoptic Taper

Bare SiPM

CsI:Tl-Coated SiPM

mm² SiPMs
CsI:Tl deposition and comparison

Fiberoptic taper

Graphite substrate with reflector

Fiberoptic taper with CsI:Tl

Graphite substrate with reflector and CsI:Tl
CsI:Tl film morphology

Direct deposition on fiberoptic taper

Deposition on conventional substrate
Silver reflector: 30% brighter than aluminum. Similar MTFs.
J8734 HL: 150 μm thick; 70 kVp, 10 mA, 10 Pulses
Alternate deposition approach

Crystalline microcolumnar CsI:Tl films

Conventional amorphous microcolumnar CsI:Tl films
Properties of scintillation materials

<table>
<thead>
<tr>
<th>Scintillator</th>
<th>Density (g/cm³)</th>
<th>Effective Z</th>
<th>Light Yield (photons/MeV)</th>
<th>Emission Wavelength (λ_max)</th>
<th>Decay Time (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gd₂O₂S:Tb *</td>
<td>3.7</td>
<td>59.4</td>
<td>58,000</td>
<td>545</td>
<td>558 μs</td>
</tr>
<tr>
<td>CsI:Tl</td>
<td>4.53</td>
<td>54</td>
<td>62,500</td>
<td>540</td>
<td>680</td>
</tr>
<tr>
<td>Ba₂CsI₅:Eu</td>
<td>5.04</td>
<td>54</td>
<td>97,000</td>
<td>450</td>
<td>1,500</td>
</tr>
<tr>
<td>GdI₃:Ce</td>
<td>5.2</td>
<td>56.59</td>
<td>89,000</td>
<td>563</td>
<td>33</td>
</tr>
<tr>
<td>SrI₂:Eu</td>
<td>4.55</td>
<td>49.85</td>
<td>115,000</td>
<td>435</td>
<td>1,200</td>
</tr>
<tr>
<td>YI₃:Ce</td>
<td>4.6</td>
<td>50.8</td>
<td>98,600</td>
<td>549</td>
<td>34</td>
</tr>
<tr>
<td>CaI₂:Eu</td>
<td>3.96</td>
<td>50.16</td>
<td>86,000</td>
<td>470</td>
<td>790</td>
</tr>
<tr>
<td>Lu₂O₃:Eu</td>
<td>9.5</td>
<td>67.3</td>
<td>30,000</td>
<td>610</td>
<td>1,000 μs</td>
</tr>
<tr>
<td>LuI₃:Ce</td>
<td>5.6</td>
<td>59.7</td>
<td>115,000</td>
<td>540</td>
<td>28</td>
</tr>
</tbody>
</table>

Properties of various bright scintillators for hard X-ray imaging
Highlighted materials are grown in microcolumnar form at RMD
Alternate scintillator

- **Ba$_2$CsI$_5$:Eu**
 - Light yield: 97,000 ph/MeV
 - Emission: 400 to 600 nm
 - Density: 5.06 gm/cc
 - Decay time: 1.5 microsecond
 - Afterglow: Negligible
Alternate scintillator

Ba$_2$CsI$_5$:Eu
High Brightness
NuSTAR calibrations at Nevis Laboratories
NuSTAR calibrations

PSF of NuSTAR Flight Module 2, obtained using RMD’s detector.

Comparison of data acquired with the RMD detector and that simulated using the NuSTAR ray-trace simulation; X-ray source located 8 arc minutes off axis.

The excellent agreement was used to tune and validate the ray-trace simulation.
Phase II detector design

- Design input from Phase I results
- Wide range of applications require design flexibility to replace scintillators in convenient manner
 - Pressure coupling of scintillators is preferred
 - Field replaceable
 - Permits scintillator selection for low- and high-energy X-rays
 - Graphite substrates with silver reflectors
 - AMS/CMS CsI:Tl films
 - AMS/CMS Ba$_2$CsI$_5$ films
- EMCCD Detector
 - Larger pixel array (1024×1024)
 - 1:1 fiberoptic plug bonded to the EMCCD chip
 - Replaceable 3:1 fiberoptic taper
Detector SNR with CsI:Tl

<table>
<thead>
<tr>
<th>EMCCD - Fiberoptic Taper Configuration</th>
<th>1:1</th>
<th>2:1</th>
<th>3:1</th>
<th>4:1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active imaging area (square detector side dimension, mm)</td>
<td>13.3</td>
<td>26.6</td>
<td>39.9</td>
<td>53.3</td>
</tr>
<tr>
<td>Effective pixel size (μm²)</td>
<td>13x13</td>
<td>26x26</td>
<td>39x39</td>
<td>52x52</td>
</tr>
<tr>
<td>CsI:Tl light output (Ph/MeV)</td>
<td>60,000</td>
<td>60,000</td>
<td>60,000</td>
<td>60,000</td>
</tr>
<tr>
<td>Incident gamma ray energy (KeV)</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Screen light output</td>
<td>480</td>
<td>480</td>
<td>480</td>
<td>480</td>
</tr>
<tr>
<td>Light toward the CCD (70%)</td>
<td>336</td>
<td>336</td>
<td>336</td>
<td>336</td>
</tr>
<tr>
<td>Fiberoptic stub and taper transmission efficiency (%)</td>
<td>100 *</td>
<td>25</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>Light photons Incident on CCD</td>
<td>336</td>
<td>84</td>
<td>37</td>
<td>21</td>
</tr>
<tr>
<td>Signal spread over number of pixels (N)</td>
<td>4x4</td>
<td>2x2</td>
<td>2x2</td>
<td>2x2</td>
</tr>
<tr>
<td>Signal per pixel (S)</td>
<td>21</td>
<td>21</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>EMCCD QE (%) (QE/excess noise factor F)</td>
<td>79</td>
<td>79</td>
<td>79</td>
<td>79</td>
</tr>
<tr>
<td>Electrons generated at each pixel (S*QE)</td>
<td>17</td>
<td>17</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Electron Multiplying CCD gain (G)</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>No. of electrons/pixel after on-chip multiplication gain (SQEG)</td>
<td>665</td>
<td>665</td>
<td>293</td>
<td>166</td>
</tr>
<tr>
<td>S_total: Total electron signal per event (SQEG *N)</td>
<td>10,640</td>
<td>2,660</td>
<td>1,170</td>
<td>665</td>
</tr>
<tr>
<td>Excess noise factor (F)</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Photon (shot) noise GFSQRT(S*QE)</td>
<td>196</td>
<td>196</td>
<td>130</td>
<td>98</td>
</tr>
<tr>
<td>Total dark-related signal (e-/pixel/frame) (D)</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Dark noise GFSQRT(D)</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Read noise e- rms (σR)</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Total Noise Per Pixel (σ_pixel)</td>
<td>201</td>
<td>201</td>
<td>137</td>
<td>107</td>
</tr>
<tr>
<td>Total System Noise (σ_total)</td>
<td>557</td>
<td>395</td>
<td>265</td>
<td>203</td>
</tr>
<tr>
<td>Signal-to-noise ratio (SNR) S_total/σ_total</td>
<td>19</td>
<td>6.7</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>
Comparison of detector SNR with alternate scintillators

<table>
<thead>
<tr>
<th>Detector Type</th>
<th>Signal-to-noise Ratio (SNR) (S_{\text{Total}}/\sigma_{\text{Total}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMS CsI:Tl with aluminum reflector</td>
<td>(1:1) 7 (2:1) 4 (3:1) (4:1) 3</td>
</tr>
<tr>
<td>AMS CsI:Tl with silver reflector</td>
<td>(2:1) 8 (3:1) 5 (4:1) 4</td>
</tr>
<tr>
<td>Ba(_2)CsI(_3):Eu with silver reflector</td>
<td>(3:1) 10 (4:1) 7 (5:1) 5</td>
</tr>
</tbody>
</table>
Andor iXon™ DU 888 EMCCD specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMCCD Pixel Resolution</td>
<td>1024 × 1024 pixels</td>
</tr>
<tr>
<td>EMCCD Pixel Size</td>
<td>13 µm × 13 µm</td>
</tr>
<tr>
<td>EMCCD active area</td>
<td>13.3 mm × 13.3 mm</td>
</tr>
<tr>
<td>Pixel well-depth</td>
<td>80,000 e⁻</td>
</tr>
<tr>
<td>Gain register pixel well-depth</td>
<td>240,000</td>
</tr>
<tr>
<td>Electron multiplication gain</td>
<td>1–1000</td>
</tr>
<tr>
<td>QE at 540 nm (CsI:Tl emission)</td>
<td>95%</td>
</tr>
<tr>
<td>Operating temperature (OT)</td>
<td>TE-cooled to -95°C</td>
</tr>
<tr>
<td>Dark noise at OT</td>
<td><<1e⁻/pixel/second</td>
</tr>
<tr>
<td>Read noise at 10 MHz readout</td>
<td><1e⁻ at gain = 40</td>
</tr>
</tbody>
</table>
Phase II detector specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMCCD Pixel Resolution</td>
<td>1024 × 1024</td>
</tr>
<tr>
<td>EMCCD Pixel Size</td>
<td>13 (\mu)m</td>
</tr>
<tr>
<td>Scintillator-EMCCD Coupling</td>
<td>Via 3:1 coherent fiberoptic</td>
</tr>
<tr>
<td>Detector Active Area</td>
<td>39 × 39 (\text{mm}^2)</td>
</tr>
<tr>
<td>Intrinsic System Resolution</td>
<td>39 × 39 (\mu)m^2</td>
</tr>
<tr>
<td>Frame Rate</td>
<td>10 fps (full frame) to >500 fps (binning)</td>
</tr>
<tr>
<td>Low X-Ray Energy Scintillator</td>
<td><100 (\mu)m thick microcolumnar CsI:Tl</td>
</tr>
<tr>
<td>High X-Ray Energy Scintillator</td>
<td>>400 (\mu)m thick microcolumnar CsI:Tl</td>
</tr>
</tbody>
</table>
The Customized Phase II Detector
Algorithm development

Benefits of X-ray photon counting approach:

- Higher resolution
- Energy Information

Integration mode

Photon counting mode

Results with 99mTc (140 keV)
Single-photon imaging

Raw data

Events identified

Algorithm applied

Alternate view
Algorithm development

$^{241}\text{Am, 59.5 keV}$ $^{109}\text{Cd, 22 keV}$

- 450 mm thick AMS CsI:Tl aluminum-backed graphite plate used for algorithm and test.
- Lower energy range challenging.
- Tune scintillator thickness to incident energy.
- Brighter scintillators.
Single-photon counting algorithms

- First data acquired using new scintillator
- Shown here: 57Co source events observed with EMCCD and scintillator B80-22 using a 3:1 taper
- Single-photon counting algorithms written in IDL
- Optimization of various cuts to discriminate between signal counts and noise is ongoing
- First results look promising for various energies
Status update

<table>
<thead>
<tr>
<th>Phase II Tasks</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investigate brighter scintillators and morphology</td>
<td>√</td>
</tr>
<tr>
<td>Purchase customized EMCCD, 3:1 FO taper and 1:1 FO plug</td>
<td>√</td>
</tr>
<tr>
<td>Mechanically bond FO plug to EMCCD chip</td>
<td>√</td>
</tr>
<tr>
<td>Mechanically integrate system</td>
<td>√</td>
</tr>
<tr>
<td>Develop photon-counting software algorithm</td>
<td>Ongoing</td>
</tr>
<tr>
<td>Integrate software algorithm with data acquisition and imaging workflow</td>
<td>Ongoing</td>
</tr>
<tr>
<td>Test detector at RMD</td>
<td>√</td>
</tr>
<tr>
<td>Test detector at NASA X-ray facility</td>
<td>Planned</td>
</tr>
</tbody>
</table>
Summary

• Developed highly structured CsI:Tl layers on fiberoptic tapers
 – Characterized scintillator performance
 – Assembled the EMCCD detector, including software
 – Demonstrated high-resolution X-ray imaging with photon counting
• Demonstrated feasibility through NuSTAR optics calibration at Nevis Laboratories
 – Evaluated alternate scintillator approaches for enhanced sensitivity, including:
 • Crystalline microcolumnar CsI:Tl
 • Novel Ba$_2$CsI$_5$:Eu scintillator
• Developed single-photon counting algorithms